The Weather History dataset provides historical weather data for various locations. It contains detailed information about weather conditions recorded over a specific period.
Attributes:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 96453 entries, 0 to 96452
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Formatted Date 96453 non-null object
1 Summary 96453 non-null object
2 Precip Type 95936 non-null object
3 Temperature (C) 96453 non-null float64
4 Apparent Temperature (C) 96453 non-null float64
5 Humidity 96453 non-null float64
6 Wind Speed (km/h) 96453 non-null float64
7 Wind Bearing (degrees) 96453 non-null float64
8 Visibility (km) 96453 non-null float64
9 Loud Cover 96453 non-null float64
10 Pressure (millibars) 96453 non-null float64
11 Daily Summary 96453 non-null object
dtypes: float64(8), object(4)
memory usage: 8.8+ MB
| Algorithm | No.of Clusters | Daives Bouldin Score | Silhoutte Score |
|---|---|---|---|
| KMeans Clustering | 4 | 0.401 | 0.608 |
| Mean Shift Clustering | 4 | 0.435 | 0.867 |
| Agglomerative Clustering | 4 | 0.405 | 0.588 |
| Spectral Clustering | 4 | 0.401 | 0.605 |
| OPTICS Clustering | 4 | 1.870 | -0.561 |
| BIRCH Clustering | 4 | 0.405 | 0.028 |
| Ensembled Clustering | 4 | 0.184 | 0.873 |
The higher silhouette score indicates well-separated and closely-knit data points within each cluster, showcasing the successful capture of inherent structures and patterns in the weather data.