The Weather History dataset provides historical weather data for various locations. It contains detailed information about weather conditions recorded over a specific period.
Attributes:
<class 'pandas.core.frame.DataFrame'> RangeIndex: 96453 entries, 0 to 96452 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Formatted Date 96453 non-null object 1 Summary 96453 non-null object 2 Precip Type 95936 non-null object 3 Temperature (C) 96453 non-null float64 4 Apparent Temperature (C) 96453 non-null float64 5 Humidity 96453 non-null float64 6 Wind Speed (km/h) 96453 non-null float64 7 Wind Bearing (degrees) 96453 non-null float64 8 Visibility (km) 96453 non-null float64 9 Loud Cover 96453 non-null float64 10 Pressure (millibars) 96453 non-null float64 11 Daily Summary 96453 non-null object dtypes: float64(8), object(4) memory usage: 8.8+ MB
Algorithm | No.of Clusters | Daives Bouldin Score | Silhoutte Score |
---|---|---|---|
KMeans Clustering | 4 | 0.401 | 0.608 |
Mean Shift Clustering | 4 | 0.435 | 0.867 |
Agglomerative Clustering | 4 | 0.405 | 0.588 |
Spectral Clustering | 4 | 0.401 | 0.605 |
OPTICS Clustering | 4 | 1.870 | -0.561 |
BIRCH Clustering | 4 | 0.405 | 0.028 |
Ensembled Clustering | 4 | 0.184 | 0.873 |
The higher silhouette score indicates well-separated and closely-knit data points within each cluster, showcasing the successful capture of inherent structures and patterns in the weather data.